DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p

نویسندگان

  • Arka Chakraborty
  • Sébastien Lyonnais
  • Federica Battistini
  • Adam Hospital
  • Giorgio Medici
  • Rafel Prohens
  • Modesto Orozco
  • Josep Vilardell
  • Maria Solà
چکیده

The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of DNA compaction by yeast mitochondrial protein Abf2p.

We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleo...

متن کامل

Loss of the mitochondrial nucleoid protein, Abf2p, destabilizes repetitive DNA in the yeast mitochondrial genome.

Loss of Abf2p, an abundant mitochondrial nucleoid-associated protein, results in increased mitochondrial frameshifts and direct-repeat mediated deletions but has no effect on the rate of mitochondrial point mutations. The instability of repeated sequences in this strain may be linked to the loss of mitochondrial DNA in abf2-Delta strains.

متن کامل

The Sorting of Mitochondrial DNA and Mitochondrial Proteins in Zygotes: Preferential Transmission of Mitochondrial DNA to the Medial Bud

Green fluorescent protein (GFP) was used to tag proteins of the mitochondrial matrix, inner, and outer membranes to examine their sorting patterns relative to mtDNA in zygotes of synchronously mated yeast cells in rho+ x rho0 crosses. When transiently expressed in one of the haploid parents, each of the marker proteins distributes throughout the fused mitochondrial reticulum of the zygote befor...

متن کامل

Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p: reinterpretation of recent single molecule experiments.

Brewer et al. (Biophys. J. 85 (2003) 2519-2524) have studied the compaction of dsDNA in a double flow cell by observing the extension of stained DNA tethered in buffer solutions with or without Abf2p. They use a Langmuir adsorption model in which one Abf2p molecule adsorbs on one site on the DNA, and the binding constant, K, is given as the ratio of the experimental rates of adsorption and deso...

متن کامل

The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein.

Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017